
Bundle Adjustment Re�nement of Scenes with

Moving Cameras

Javier Tordable

August 30, 2009

Abstract

Bundle Adjustment is a method to re�ne a visual reconstruction

to produce jointly optimal structure and viewing parameter estimates.

Bundle Adjustment is typically used in Photogrammetry and Com-

puter Vision as the last step of a 3D scene reconstruction.

I will expose the theoretical basis of the Bundle Adjustment method,

and a basic version of the algorithm, which is commonly known. From

that I will develop the particular case of a scene with moving cameras.

Finally I will show a detailed example of the algorithm.

1 Introduction

A geometric scene contains structure information such as positions of points
as well as viewing parameters like camera positions and orientations. It may
contain as well other information like color, or camera distortion parame-
ters. Normally we will only have approximate measurements of all these
features. For example, photographs will give an approximate projection of
the 3D geometry onto a 2D plane. In many applications in Photogrammetry
and Computer Vision we will be interested in optimizing all this informa-
tion. We may want to re�ne a 3D model obtained with a laser scan using
photographies, or to generate 3D geometry from a series of photographs.

Bundle Adjustment is a method for re�ning parameter estimates of a
geometric scene. All parameters, including structure and viewing parameters
are optimized simultaneously. And they are optimized in the sense that the
method tries to minimize an error function that depends on the model �tting

1



error. Triggs at al. give an excellent overview of Bundle Adjustment [1]. It
is also treated in depth in several books, such as [2].

There are multiple real-world applications for Bundle Adjustment. For
example the reconstruction of 3D scenes from sequences of images [7], this
is a problem of interest in Archeology [8]. It's possible to obtain a realistic
3D model of a historical site from a series of photographs, which can be
used later for documentation and analysis. In Computer Vision we can �nd
applications for example to face modelling [9]. A very interesting case is
the estimation of camera and movement parameters from photographs and
video. This allows merging real video and synthetic 3D video, which is one of
the basis of augmented reality [10] and many of the special e�ects commonly
seen in Hollywood movies.

I will introduce the theoretical basis of Bundle Adjustment as a process
of iterative approximation of the solution of a non-linear equation in a man-
ifold. From that I will develop a particular example, for the adjustment of a
scene with a moving cameras. In order to do this I will touch on quaternion
geometry and spline interpolation. Finally I develop a detailed example of
the algorithm.

2 Projection Model

A projection model or camera model describes the relationship between a
point in 3D and its projection onto a 2D image plane. The camera model
that we will use is the pinhole camera model. It assumes an ideal camera,
where the aperture is a single point and there are no lenses or distortions.
Diagram 2.1 shows the elements of the pinhole camera model.

We start by taking a reference consisting of a point O, three axis X,Y, Z,
and a plane parallel to the axis X and Y at distance f > 0 in the negative
sense of Z which is called the principal plane. In order to project a point in
the 3D space (x, y, z) which is not in the X, Y plane onto the principal plane
lets observe the following:

x
z

= −x′

f

y
z

= −y′

f

which is equivalent to

2



P=(x,y,z)

O

P’=(x’,y’)

f

X

Y

Z

C

Figure 1: The pinhole camera model

x′ = −f ·x
z

y′ = −f ·y
z

and in matricial form (
x′

y′

)
= −f

z

(
x
y

)
If we consider the point (x, y, z) as an element of P3, and the projection

(x′, y′) as an element of P2 then the transformation is

 x′

y′

1

 ∼

 f 0 0 0
0 f 0 0
0 0 1 0

 ·


x
y
z
1

 (1)

In general we will consider cameras that are not in the origin. In order
to obtain the coordinates of a point [x, y, z, 1] in a di�erent camera, we will
apply a combination of a rotation R and a translation t:

xt

yt

zt

1

 ∼
[

R −t
0 1

]
·


x
y
z
1

 (2)

3



When we combine equations 3 and 2 we obtain:

 x′

y′

1

 ∼

 f 0 0 0
0 f 0 0
0 0 1 0

 ·
[

R −t
0 1

]
·


x
y
z
1

 = P ·


x
y
z
1

 (3)

P is a 3× 4 matrix called camera projection matrix. For a given point X
and a camera P the projection of the point in the camera will be given by
P · X.

There are more complex projection models, that take into account the
optical properties of the lenses. In our case we will limit ourselves to the
pinhole camera model.

3 Bundle Adjustment

A simple scene is composed of a set of points

X = {X1, X2, . . . , XN}

a set of cameras
P = {P1, P2, . . . , PM}

and a set of projections

Y = {Yi1,j1 , Yi2,j2 , . . . , YiK ,jK
}

. The points are de�ned by their projective coordinates, and the cameras are
given by their 3 × 4 projection matrices. Yi,j is the measured projection of
point Xi through camera Pj.

Typically we will only have the coordinates of the projections (which
come from measurements of the scene, i.e. photographs), and we would like
to know the coordinates of the points and the camera parameters. Or we will
know the coordinates of the projections and the points (for example given
by photographs and a laser scan) and we would like to know the parameters
of the cameras. Bundle Adjustment can be used to obtain optimal estimates
for the coordinates of the points in X and the parameters of the cameras in
P in order to minimze a given prediction error.

4



Bundle Adjustment is very general, but for simplicity we will consider
only a basic case. We will assume that each point Xi has a projection in each
camera Pi. If we have a given estimate for point Xi, say X̂i and for camera
Pj, P̂j we can compute the reprojection Ŷi,j = P̂j · X̂i, and the reprojection

error as
∥∥∥Yi,j − P̂j · X̂i

∥∥∥2

, where we will take ‖x‖ as the Euclidean distance of

the normalized coordinates, ‖[x, y, 1]‖ =
√

x2 + y2. We are interested then

in �nding P̂j, X̂i that minimize the total reprojection error.

minP̂j ,X̂i

(∑N
i=1

∑M
j=1

∥∥∥Yi,j − P̂j · X̂i

∥∥∥2
)

(4)

3.1 Parametrization

We will consider a state vector s, composed of all the coordinates of Xi =
[xi

1, x
i
2, x

i
3, x

i
4] ∈ X and

Pj =

 pj
11 . . . pj

14
...

pj
31 . . . pj

34

 ∈ P

s =
[
x1

1, x
1
2, x

1
3, x

1
4, . . . , x

N
4 , p1

11, p
1
12, . . . , p

1
34, . . . , p

M
11 , . . . , p

M
34

]t
or

s = [X1, . . . , XN , P1, . . . PM ]

Strictly speaking this vector is a point in a certain parameter space S,
which in our case is a cartesian product of N projective P3 spaces and M
projective spaces Hom : P3 → P2 ∼ P11.

s ∈ S = P3 × . . . (N) . . . × P3 × P11 × . . . (M) . . . × P11

Similarly we can compose a vector r with all the coordinates of the pro-
jections Yi,j =

[
yi,j

1 , yi,j
2 , yi,j

3

]
∈ Y .

r =
[
y1,1

1 , y1,1
2 , y1,1

3 , . . . , yN,M
1 , yN,M

2 , yN,M
3

]
or

r = [Y1,1, Y1,2, . . . , Y1,M , . . . , YN,M ]

5



which is a point in a manifold R = P2 × . . . × (N · M) × . . . × P2.

3.2 Error function

From the considerations above we can de�ne the following (nonlinear) func-
tion:

f : S → R

s = [X1, . . . , XN , P1, . . . , PM ] → r = [Y1,1 = P1 · Y1, . . . , YN,M = PM · YN ]

which takes a status vector into its vector of reprojected observations.

So for a given parameter estimate ŝ =
[
X̂1, . . . , X̂N , P̂1, . . . , P̂M

]
, and

measured features rm = [Y1,1, . . . , YN,M ] the total reprojection error is:

e (ŝ) = ‖f (ŝ) − rm‖2 (5)

It is possible to consider other error functions, in many cases more robust
than minimum squares. However, as we will see in the following section using
minimum squares makes the deduction of the optimization algorithm easier.

3.3 Non-linear least squares

From equation 5 we can consider the optimization process as a problem of
non linear least squares. I will describe how the Gauss-Newton method [3]
can be applied.

First, lets take an initial estimate of the solution ŝ0. In general f will be
smooth in a neighborhood S0 of ŝ0 and the minimum of e(x) = ‖f (x) − rm‖2

will be found at a point p where the gradient is zero:

e (x) = ‖f (x) − rm‖2 =
∑

i

(fi(x) − rm,i)
2 has a minumum in p ∈ S0 ⇔

0 =
∂e (x)

∂xj

∣∣∣∣
p

= 2 ·
∑

i

(
(fi (p) − rm,i) ·

∂fi (x)

∂xj

∣∣∣∣
p

)
∀j (6)

In general we may not be able to solve this equation. We can consider an
approximate equation using the Taylor expansion of f :

6



f(x) ' f (ŝ0) + J |ŝo
· δ (7)

where J |ŝ0
is the Jacobian matrix of f evaluated in ŝ0. Using the notation

in 3.1, s = [X1, . . . , XN , P1, . . . PM ], r = [Y1,1, Y1,2, . . . , Y1,M , . . . , YN,M ], we
can build J knowing that:

∂Yi,j

∂Xi

= Pj
∂Yi,j

∂Xk

= 0∀k 6= i

∂Yi,j

∂Pi

= Xj
∂Yi,j

∂Pk

= 0∀k 6= i

Replacing 7 into 6 as p = ŝ0 + δ we obtain ∀j:

0 =
∑

i

((
fi (ŝ0) + Ji|ŝ0

· δ − rm,i

)
· Ji,j|ŝ0

)
and proceeding as in the conventional linear least squares method:

=
∑

i

(
(fi (ŝ0) − rm,i) +

∑
k

Ji,k|ŝ0
· δk

)
Ji,j|ŝ0

=
∑

i

Ji,j|ŝ0
(fi (ŝ0) − rm,i) +

∑
i

∑
k

Ji,j|ŝ0
Ji,k|ŝ0

· δk = 0

For all j, and as J = (Ji,j), J t = (Jj,i) we can write:

J t
∣∣
ŝ0

· (rm − f (ŝ0)) = J t
∣∣
ŝ0

· J |ŝ0
· δ

or taking J |ŝ0
= J as:

J tJδ = J t (rm − f (ŝ0))

which is a linear system and can be solved using Gauss' method. There are
multiple optimizations to this algorithm, such as the Levenberg�Marquardt
algorithm [4], [5]. More iterative methods for optimization can be found in
[6].

7



Figure 2: A scene with a moving camera

3.4 Algorithm

The basic algorithm is as follows:

1. Take an initial estimation of the state ŝ0

2. Compute J = (Ji,j)|ŝ0
=
(

∂fi(x)
∂xj

)∣∣∣
ŝ0

3. Solve the linear system J tJδ = J t (rm − f (ŝ0)) and obtain δ

4. Obtain a new estimation for the state as ŝ1 = ŝ0 + δ and normalize ŝ1

5. Repeat from step 2, replacing ŝi with ˆsi+1 until e (ŝi) < ε

4 Moving Cameras

Previously we discussed a trivial parametrization of the camera parameters,
simply taking all the elements in the projection matrix into the state vector.
However it's possible to use other parametrizations. I will discuss two alter-
natives, �rst replacing the projection matrix with a traslation vertor and a
rotation quaternion [11]. This will signi�cantly enhance the numerical sta-
bility of the problem [12]. Second, instead of adjusting one camera for each
frame, I will adjust the coe�cients of a set of polynomials that interpolates
the camera parameters.

8



4.1 Rotation quaternions

If we take the vector space R4 with the basis 1, i, j,k and the standard vector
addition, scalar multiplication and the following operation:

i2 = −1 j2 = −1 k2 = −1

i · j = k j · k = i k · i = j

1 · x = x · 1 = x

we obtain the division ring of the quaterions H, or in an abuse of notation
the non-commutative �eld of quaternions. For convenience we will denote
quaternions with the notation a + b · i + c · j + d ·k, as 1 is the unit element,
or even a +−→v , with a being the scalar part and b · i + c · j + d · k being the
vector part.

According to Euler's rotation theorem [13], any rotation in R3 is equiv-
alent to a rotation of magnitude α about a �xed axis v = [x, y, z] which
is a unit vector. We can parametrize then a rotation (a, (x, y, z)) with a
quaternion in the following way [14]:

q = cos
(α

2

)
+ sin

(α

2

)
(x · i + y · j + z · k)

which is a unitary quaternion because

‖q‖2 = cos2
(α

2

)
+ sin2

(α

2

) (
x2 + y2 + z2

)
= 1

From a unitary quaternion q = [a, b, c, d] we can obtain back the Euler
axis v and rotation α (which are not unique) as:

α = 2 · arccos (a)

v =
[b, c, d]

‖[b, c, d]‖
= [x, y, z]

And we can get the rotation matrix using Rodrigues formula:

R = cosα · I3 + (1 − cosα)

 x
y
z

 ·
[

x y z
]
− sinα

 0 −z y
z 0 −x
−y x 0



9



If we replace the Euler axis and angle in base of the quaternion coordinates
and denote qv = [b, c, d] we obtain

cosα = cos2
(α

2

)
− sin2

(α

2

)
= cos2 (arccos (a)) −

∥∥∥(sin(α

2

)
(x · i + y · j + z · k)

)∥∥∥2

= a2 − b2 − c2 − d2 = a2 − qv · qt
v

And 1 − cosα = 2 · sin2
(

α
2

)
, but [b, c, d] = sin

(
α
2

)
[x, y, z], so

qt
v · qv =

 b
c
d

 ·
[

b c d
]

= sin2
(α

2

) x
y
z

 ·
[

x y z
]

Also sinα = 2 · cos
(

α
2

)
· sin

(
α
2

)
= 2 · a · sin

(
α
2

)
so

sinα

 0 −z y
z 0 −x
−y x 0

 = 2a·sin
(α

2

) 0 −z y
z 0 −x
−y x 0

 = 2a

 0 −d c
d 0 −b
−c b 0


and the rotation matrix in base of the quaternion is

R =
(
a2 − qv · qt

v

)
· I3 + 2 · qt

v · qv − 2a

 0 −d c
d 0 −b
−c b 0


Finally, we will parametrize each camera Pi with a quaternion qi =

[qi
1, q

i
2, q

i
3, q

i
4] and a projective point ti = [ti1, t

i
2, t

i
3, t

i
4]. q is normalized with

‖q‖ = 1 and t is normalized with ti4 = 1.

4.2 Interpolating polynomial

In our case, global interpolation is not the most numerically stable method.
It would be very unusual for a camera in a scene with dozens or hundreds
of frames to follow a polynomial path. Normal camera movements are rota-
tions from a �xed point, rotations around a target or tavellings in a slightly
curved line. In case of a video taken from a car for example, we will have a

10



Figure 3: Trajectory and rotation of a camera in a moving vehicle

combination of all three as in �gure 3. In general it is a well known problem
that high degree interpolants are not adequate for these kind of functions
[15]. Because of this we will use piecewise polynomial interpolants or splines.
It will be more stable when modelling individual segments of the movement,
and we will have smooth transitions between segments.

For each camera in P = {P1, P2, . . . , PM} we have

(qi, ti) ∼
[
qi
1, q

i
2, q

i
3, q

i
4, t

i
1, t

i
2, t

i
3, t

i
4

]
=
[
pi

1, . . . , p
i
8

]
In order to simplify, we will consider equally spaced data points {1, 2, . . . , M}.

So for 1 ≤ i ≤ 8 we have to interpolate{(
1, pi

1

)
,
(
2, pi

2

)
, . . .

(
M, pi

M

)}
In each segment (j, j + 1) , 1 ≤ j ≤ M − 1 the linear interpolant Si

j has
the form:

Si
j (x) = pi

j +
x − j

(j + 1) − j

(
pi

j+1 − pi
j

)
= pi

j + (x − j)
(
pi

j+1 − pi
j

)
Using these coe�cients in the Bundle Adjustment method is equivalent to

using the data points themselves. Also the interpolants do not join smoothly
in the data points so the visual sensation is not satisfactory.

We can try to use quadratic polynomials in each segment and impose the
condition that the derivative in each data point of the interpolants from the
left and from the right are equal. However there is a severe disadvantage
in this method. The e�ect of an irregularity in one derivative may not de-
cay in points distant from the irregularity [16]. For example, in the points

11



Figure 4: Interpolation of f (x) = 0 with error f ′ (0) = 1

{(1, 0) , (2, 0) , (3, 0) , (4, 0) , (5, 0)}, with s′ (1) = 1 (for example because of a
numerical error) the following interpolant has a continuous �rst derivative:

S1 (x) = − (x − 1) · (x − 2) = −x2 + 3x − 2 (x ∈ [1, 2))

S2 (x) = (x − 2) · (x − 3) = x2 − 5x + 6 (x ∈ [2, 3))

S3 (x) = − (x − 3) · (x − 4) = −x2 + 7x − 12 (x ∈ [3, 4))

S4 (x) = (x − 4) · (x − 5) = x2 − 9x + 20 (x ∈ [4, 5))

but the approximation of the movement that it gives is intuitively wrong
as it seems in �gure 4. Because of this we will use natural cubic splines.

4.3 Natural splines

For the interval [1, 2) we will consider a polynomial:

S1 (x) = a1 + b1 (x − 1) + c1 (x − 1)2 + d1 (x − 1)3

with:

S1 (1) = a1

S ′
1 (1) = b1

S ′′
1 (1) = 2c1 = 0

with the free parameters a1, b1, d1 and for [2, 3) and in general [j, j + 1):

S2 (x) = a2 + b2 (x − 2) + c2 (x − 2)2 + d2 (x − 2)3

where:

S2 (2) = a2 = S1 (2) = a1 + b1 + c1 + d1

S ′
2 (2) = b2 = S ′

1 (2) = b1 + 2c1 + 3d1

S ′′
2 (2) = 2c2 = S ′′

1 (2) = 2c1 + 6d1

12



with the free parameter d2, etc. except for the last interpolant SM−1. In
that case dM−1 will be determined by S ′′

M−1 (M) = 0.
Notice that in the normal interpolation problem for M points we have

4 (M − 1) indeterminates. We impose M − 1 conditions on Sj (j), M − 1
conditions on Sj(j + 1), M − 2 conditions S ′

j (j + 1) = Sj+1 (j + 1), M − 2
conditions S ′′

j (j + 1) = S ′′
j+1 (j + 1) for a total of 4M − 6. The remaining

2 degrees of freedom allow S ′′
1 (1) = 0 = S ′′

M−1 (M). In our case we have
4 (M − 1) indeterminates as well, and we are imposing M − 2 conditions
Sj (j + 1) = Sj+1 (j + 1), M − 2 conditions S ′

j (j + 1) = Sj+1 (j + 1), M − 2
conditions S ′′

j (j + 1) = S ′′
j+1 (j + 1) and �nally 2 conditions for a natural

spline S ′′
1 (1) = 0 = S ′′

M−1 (M) for a total of 3M − 4. As a result there are M
indeterminates {a1, b1, d1, . . . , dM−2}.

4.4 Algorithm

The new algorithm, using what was discussed in this section is as follows:

1. Take an initial estimation of the state:
ŝ0 =

[
X̂1, . . . , X̂N , a1

1, b
1
1, d

1
1, . . . , d

1
M−2, . . . , a

8
1, b

8
1, d

8
1, . . . , d

8
M−2

]
2. Compute the polynomials S1

j , . . . , S
8
j from the extimated coe�cients:

Si
j (x) = ai

j + bi
j (x − j) + ci

j (x − j)2 + di
j (x − j)3

3. Obtain the camera quaternions and translation parameters:

Pj =
[
qj
1, q

j
2, q

j
3, q

j
4, t

j
1, t

j
2, t

j
3, t

j
4

][
S1

j (j) , S2
j (j) , S3

j (j) , S4
j (j) , S5

j (j) , S6
j (j) , S7

j (j) , S8
j (j)

]
4. Obtain the rotation matrix and projection matrix P i using Rodrigues

formula

5. Compute J = (Ji,j)|ŝ0
=
(

∂fi(x)
∂xj

)∣∣∣
ŝ0

from the projection matrix. This

has to be done symbolically.

6. Solve the linear system J tJδ = J t (rm − f (ŝ0)) and obtain δ

7. Obtain a new estimation for the state as ŝ1 = ŝ0 +δ and normalize ŝ1,
with ‖q‖ =

∥∥[qj
1, q

j
2, q

j
3, q

j
4

]∥∥ = 1∀j, tj4 = 1∀j

8. Repeat from step 2, replacing ŝi with ˆsi+1 until e (ŝi) < ε

13



5 Detailed Example

Let's take a simple scene, with one point X and three frames of one camera
P1, P2, P3. We will have two splines Si,1 and Si,2 for each of the 8 camera
parameters of the cameras. 4 parameters for the rotation quaternion, and 4
parameters for the traslation. For each one of those 8 parameters we have
two natural cubic splines Si,1 (x) = ai

1 + bi
1 (x − 1) + ci

1 (x − 1)2 + di
1 (x − 1)3

and Si,2 (x) = ai
2 + bi

2 (x − 2) + ci
2 (x − 2)2 + di

2 (x − 2)3. But ci
1is determined

by the natural condition and all 4 parameters of the second one are deter-
mined by the C2 conditions and the natural condition in the other extreme.
So have 3 indeterminates for those 2 splines, ai

1, b
i
1, d

i
1 which we will denote

ai, bi, di. We will compute the full projection matrix from the camera param-
eter interpolants. The state vector s has the form:

s = [x1, x2, x3, x4, a1, a2, . . . , a8b1, . . . , b8d1, . . . , d8]

5.1 Interpolants

For each parameter i we have two interpolants:

Si,1 (x) = ai + bi (x − 1) + di (x − 1)3

Si,2 (x) = Si,1 (2) + S ′′
i,1 (2) (x − 2) +

S ′′
i,1 (2)

2
(x − 2)2 + di,2 (x − 2)3

= (ai + bi + di) + (bi + 3di) (x − 3) + 3di (x − 2)2 − di (x − 2)3

and because S ′′
i,2 (3) = 0 ⇒ 6di + 6di,2 (3 − 2) ⇒ di,2 = −di.

5.2 Quaternion and Translation

The quaternion and translation vector that parametrize the cameras are:

14





q1
1

q1
2

q1
3

q1
4

t11
t12
t13
t14


=



S1,1 (1)
S2,1 (1)
S3,1 (1)
S4,1 (1)
S5,1 (1)
S6,1 (1)
S7,1 (1)
S8,1 (1)


,



q2
1

q2
2

q2
3

q2
4

t21
t22
t23
t24


=



S1,1 (2)
S2,1 (2)
S3,1 (2)
S4,1 (2)
S5,1 (2)
S6,1 (2)
S7,1 (2)
S8,1 (2)


,



q3
1

q3
2

q3
3

q3
4

t31
t32
t33
t34


=



S1,2 (3)
S2,2 (3)
S3,2 (3)
S4,2 (3)
S5,2 (3)
S6,2 (3)
S7,2 (3)
S8,2 (3)


Or explicitly:



q1
1

q1
2

q1
3

q1
4

t11
t12
t13
t14


=



a1

a2

a3

a4

a5

a6

a7

a8


,



q2
1

q2
2

q2
3

q2
4

t21
t22
t23
t24


=



a1 + b1 + d1

a2 + b2 + d2

a3 + b3 + d3

a4 + b4 + d4

a5 + b5 + d5

a6 + b6 + d6

a7 + b7 + d7

a8 + b8 + d8


,



q3
1

q3
2

q3
3

q3
4

t31
t32
t33
t34


=



a1 + 2b1 + 6d1

a2 + 2b2 + 6d2

a3 + 2b3 + 6d3

a4 + 2b4 + 6d4

a5 + 2b5 + 6d5

a6 + 2b6 + 6d6

a7 + 2b7 + 6d7

a8 + 2b8 + 6d8


5.3 Rotation matrix

Back to the Rodrigues formula for q = [a, b, c, d] , qv = [b, c, d]:

R =
(
a2 − qv · qt

v

)
· I3 + 2 · qt

v · qv − 2a

 0 −d c
d 0 −b
−c b 0


or in the previous notation:

15



Ri =

 qi2
1 − qi2

2 − qi2
3 − qi2

4 0 0
0 qi2

1 − qi2
2 − qi2

3 − qi2
4 0

0 0 qi2
1 − qi2

2 − qi2
3 − qi2

4


+

 2qi2
2 2qi

2q
i
3 2qi

2q
i
4

2qi
2q

i
3 2qi2

3 2qi
3q

i
4

2qi
2q

i
4 2qi

3q
i
4 2qi2

4


+

 0 2qi
1q

i
4 −2qi

1q
i
3

−2qi
1q

i
4 0 2qi

1q
i
2

2qi
1q

i
3 −2qi

1q
i
2 0


=

 qi2
1 + qi2

2 − qi2
3 − qi2

4 2qi
2q

i
3 + 2qi

1q
i
4 2qi

2q
i
4 − 2qi

1q
i
3

2qi
2q

i
3 − 2qi

1q
i
4 qi2

1 − qi2
2 + qi2

3 − qi2
4 2qi

3q
i
4 + 2qi

1q
i
2

2qi
2q

i
4 + 2qi

1q
i
3 2qi

3q
i
4 − 2qi

1q
i
2 qi2

1 − qi2
2 − qi2

3 + qi2
4


In the next section we will replace the values for the quaternions obtained

by evaluating the interpolants into these formulas, to obtain the projection
matrix.

5.4 Projection Matrix

If we go back to equation 3:

P i ·


x1

x2

x3

x4

 ∼

 f 0 0 0
0 f 0 0
0 0 1 0

 ·
[

Ri −ti

0 1

]
·


x1

x2

x3

x4


We have for the �rst frame P1:

P 1 ∼

 p1
1,1 p1

1,2 p1
1,3 p1

1,4

p1
2,1 p1

2,2 p1
2,3 p1

2,4

p1
3,1 p1

3,2 p1
3,3 p1

3,4


where:

16



p1
1,1 = f

(
a2

1 + a2
2 − a2

3 − a2
4

)
p1

1,2 = 2f (a2a3 + a1a4)

p1
1,3 = 2f (a2a4 − a1a3) p1

1,4 = −fa5

p1
2,1 = 2f (a2a3 − a1a4) p1

2,2 = f
(
a2

1 − a2
2 + a2

3 − a2
4

)
p1

2,3 = 2f (a3a4 + a1a2) p1
2,4 = −fa6

p1
3,1 = 2 (a2a4 + a1a3) p1

3,2 = 2 (a3a4 − a1a2)

p1
3,3 = a2

1 − a2
2 − a2

3 + a2
4 p1

3,4 = −a7

Similarly we can compute the projection matrix for P2, which is shown
below:

p2
1,1 = f

(
(a1 + b1 + d1)

2 + (a2 + b2 + d2)
2 − (a3 + b3 + d3)

2 − (a4 + b4 + d4)
2)

p2
1,2 = 2f ((a2 + b2 + d2) (a3 + b3 + d3) + (a1 + b1 + d1) (a4 + b4 + d4))

p2
1,3 = 2f ((a2 + b2 + d2) (a4 + b4 + d4) − (a1 + b1 + d1) (a3 + b3 + d3))

p2
1,4 = −f (a5 + b5 + d5)

p2
2,1 = 2f ((a2 + b2 + d2) (a3 + b3 + d3) − (a1 + b1 + d1) (a4 + b4 + d4))

p2
2,2 = f

(
(a1 + b1 + d1)

2 − (a2 + b2 + d2)
2 + (a3 + b3 + d3)

2 − (a4 + b4 + d4)
2)

p2
2,3 = 2f ((a3 + b3 + d3) (a4 + b4 + d4) + (a1 + b1 + d1) (a2 + b2 + d2))

p2
2,4 = −f (a6 + b6 + d6)

p2
3,1 = 2 ((a2 + b2 + d2) (a4 + b4 + d4) + (a1 + b1 + d1) (a3 + b3 + d3))

p2
3,2 = 2 ((a3 + b3 + d3) (a4 + b4 + d4) − (a1 + b1 + d1) (a2 + b2 + d2))

p2
3,3 = (a1 + b1 + d1)

2 − (a2 + b2 + d2)
2 − (a3 + b3 + d3)

2 − (a4 + b4 + d4)
2

p2
3,4 = − (a7 + b7 + d7)

For space reasons I will omit the projection matrix for P3, however it can
be obtained easily from this one by multiplying each bi by 2 and each di by
6.

It is worthy noting that in the �rst case that we discussed the projection
matrix can be computed numerically. Each element in the projection matrix
is an element in the state vector, so the partials concide with elements in the
state vector. However in this case the projection matrix has to be computed
symbolically. The partials depend in the number of interpolants and the
number of points.

17



5.5 Jacobian Matrix

From the projection matrix we can easily compute the partials for the Jaco-
bian:

∂y1
1

∂a1

=
∂
(
p1

1,1x1 + p1
1,2x2 + p1

1,3x3 + p1
1,4x3

)
∂a1

1

= 2fa1x1 + 2fa4x2 − 2fa3x3

∂y1
1

∂a2

= 2fa2x1 + 2fa3x2 + 2fa4x3

∂y1
1

∂a3

= −2fa3x1 + 2fa2x2 − 2fa1x3

∂y1
1

∂a4

= −2fa4x1 + 2fa1x2 + 2fa2x3

∂y1
1

∂a5

= −f

∂y1
1

∂a6

= 0,
∂y1

1

∂a7

= 0,
∂y1

1

∂a8

= 0

∂y1
1

∂bi

= 0∀i,
∂y1

1

∂di

= 0∀i

∂y1
1

∂x1

=
∂
(
p1

1,1x1 + p1
1,2x2 + p1

1,3x3 + p1
1,4x3

)
∂x1

= f
(
a2

1 + a2
2 − a2

3 − a2
4

)
∂y1

1

∂x2

= 2f (a2a3 + a1a4)

∂y1
1

∂x3

= 2f (a2a4 − a1a3)

∂y1
1

∂x4

= −fa5

and similarly for the rest of the yi
j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. These partials

would be computed symbolically because the structure of the Jacobian de-
pends on the parametrization, and evaluated in the current estimation of the
state vector in order to obtain the Jacobian and the adjustment.

18



6 Future Development

It it worth noting that the basic adjustment algorithm can be improved in
many ways. For example we can have error functions that are more robust
than least squares error. We can take weighted square errors to take into
account the error in the measurements. Or we can eliminate outliers when
computing the error by limiting to the center 80% measurements.

We can also use multiple iterative approximation methods. In our case
we took a �rst order method, but in general a second order method may
be more convenient when we have a reasonable approximation of the initial
state. Such a method would converge much faster than a �rst order method.

In terms of the data used by the adjustment, we can include camera
aberration parameters due to the use of physical lenses. And we can take
into account color information or other kind of data coming from previous
processing phases in a complete reconstruction algorithm.

It is also possible to perform multiple optimizations in the solution of the
linear system equations. Because of the sparse nature of the Jacobian and
Hessian matrix we can optimize them to reduce their dimension and make
the solution of the linear system faster.

A software package to implement the basic Bundle Adjustment method
was developed as part of my collaboration with the DAVAP research group 1.
It performs the parametrization of arbitrarily complex scenes and the re�ne-
ment using minimum weighted linear squares. Currently there is work under
progress to implement the version of the algorithm that takes into account
moving cameras. I expect that it will perform better in many commonly
found cases, like moving vehicles, or cinematic scenes.

1http://157.88.193.21/~lfa-davap/

19



References

[1] Triggs, B. and McLauchlan, P.F. and Hartley, R.I. and Fitzgibbon, A.W.
1999. Bundle adjustment - a modern synthesis. Lecture Notes in Com-
puter Science. Springer. 298�372

[2] Hartley, R. and Zisserman, A. 2003. Multiple view geometry in computer
vision. Cambridge University Press

[3] Björck, A. 1996. Numerical methods for least squares problems. Society
for Industrial Mathematics

[4] Levenberg, K. 1944. A method for the solution of certain nonlinear prob-
lems in least squares. Quart. Appl. Math. Volume 2. Number 2. 164�168

[5] Marquardt, D.W. 1963. An algorithm for least-squares estimation of
nonlinear parameters. Journal of the Society for Industrial and Applied
Mathematics. Volume 11. Number 2. JSTOR. 431�441

[6] Kelley, CT. 1999. Iterative methods for optimization. Society for Indus-
trial Mathematics

[7] Pollefeys, M. and Koch, R. and Vergauwen, M. and Van Gool, L. 2000.
Automated reconstruction of 3D scenes from sequences of images. ISPRS
Journal Of Photogrammetry And Remote Sensing. Volume 55. Number
4. Elsevier. 251�267

[8] Pollefeys, M. and Van Gool, L. and Vergauwen, M. and Cornelis, K. and
Verbiest, F. and Tops, J. 2001. Image-based 3D acquisition of archae-
ological heritage and applications. Proceedings of the 2001 conference
on Virtual reality, archeology, and cultural heritage. ACM New York.
255�262

[9] Shan, Y. and Liu, Z. and Zhang, Z. 2001. Model-based bundle adjust-
ment with application to face modeling. International Conference on
Computer Vision. Eighth IEEE International Conference on Computer
Vision, 2001. ICCV 2001. Proceedings. Volume 2. 644�651

[10] Cornelis, K. and Pollefeys, M. and Vergauwen, M. and Van Gool, L.
2001. Augmented reality using uncalibrated video sequences. Lecture
Notes in Computer Science. Springer. 144�160

20



[11] Altmann, S.L. 1986. Rotations, quaternions, and double groups. Claren-
don Press Oxford

[12] Kuipers, J.B. 2002. Quaternions and rotation sequences: a primer with
applications to orbits, aerospace, and virtual reality. Princeton Univer-
sity Press

[13] Euler, L. 1758. Elementa doctrinae solidorum. Novi commentarii
academiae scientiarum Petropolitanae. 109�140

[14] Schmidt, J. and Niemann, H. 2001. Using quaternions for parametrizing
3�D rotations in unconstrained nonlinear optimization. Vision, Model-
ing, and Visualization. Proceedings of the Vision Modeling and Visual-
ization Conference 2001. 399�406

[15] Runge, C. 1901. Uber empirische Funktionen und die Interpolation zwis-
chenaquidistanten Ordinaten. Zeitschrift fur Mathematik und Physik.
Volume 46. 224�243

[16] Powell, M.J.D. 1981. Approximation theory and methods. Cambridge
Univ Press. 221�223.

21


