
MAPREDUCE FOR INTEGER FACTORIZATION

JAVIER TORDABLE

Abstract. Integer factorization is a very hard computational problem. Cur-
rently no e�cient algorithm for integer factorization is publicly known. How-
ever, this is an important problem on which it relies the security of many real
world cryptographic systems.

I present an implementation of a fast factorization algorithm on MapRe-
duce. MapReduce is a programming model for high performance applications
developed originally at Google. The quadratic sieve algorithm is split into the
di�erent MapReduce phases and compared against a standard implementation.

1. Introduction

The security of many cryptographic algorithms relies on the fact that factoring
large integers is a very computationally intensive task. In particular RSA [1] would
be vulnerable if there was an e�cient algorithm to factor semiprimes (products of
two primes). This could have severe consequences, as RSA is one of the most widely
used algorithms in electronic commerce applications [2].

There are many algorithms for integer factorization [3]. From the trivial trial
division to the classical Fermat's factorization method [4] and Euler's factoring
method [5] to the modern algorithms, the quadratic sieve [6] and the number �eld
sieve [7]. In particular the number �eld sieve algorithm was used in 1996 to factor
a 512 bit integer [8], the lowest integer length used in commercial RSA implemen-
tations. There have been several other big integers factored over the course of the
last decade. I would like to point out that in those cases the feat was accomplished
with tremendous e�ort developing the software and a very considerable investment
in hardware [9],[10].

In what follows I will expose how MapReduce, a distributed computational
framework, can be used for integer factorization. As an example I will show an
implementation of the quadratic sieve algorithm. I will also compare in terms of
performance and cost a conventional implementation with the MapReduce imple-
mentation.

2. MapReduce

I claim no participation in the development of the MapReduce framework. This
section is basically a short extract of the original MapReduce paper by Je� Dean
and Sanjay Ghemawat [11]. MapReduce is a programming model inspired in com-
putational programming. Users can specify two functions, map and reduce. The
map function processes a series of (key, value) pairs, and outputs intermediate (key,
value) pairs. The system automatically orders and groups all (key, value) pairs for
a particular key, and passes them to the reduce function. The reduce function re-
ceives a series of values for a single key, and produces its output, which is sometimes
a synthesis or aggregation of the intermediate values.
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The canonical example of a MapReduce computation is the construction of an
inverted index. Let's take a collection of documents D = {D0, D1, ..., DN} which
are composed of words D0 = (d0,0, d0,1, ..., d0,L0) , D1 = (d1,0, d1,1, ..., d1,L1) and so
on. We de�ne a map function the following way:

map : (i,Di) → {(di,0, (i, 0)) , (di,1, (i, 1)) , ..., (di,Li , (i, Li))}

that is, for a given document it processes each word in the document and outputs
an intermediate pair. The key is the word itself, and the value is the location in
the corpus, indicated as (document, position). The reduce function is de�ned as:

reduce : {(d, (i1, j1)) , ..., (d, (iL, jL))} → (d, {(i1, j1) , ..., (iL, jL)})

For a collection of pairs with the same key (the same word), it outputs a new pair,
in which the key is the same, and the value is the aggregation of the intermediate
values. In this case, the set of locations (document and position in the document)
in which the word can be found in the corpus.

The MapReduce implementation automatically takes care of the parallel exe-
cution in a distributed system, data transmission, fault tolerance, load balancing
and many other aspects of a high performance parallel computation. The MapRe-
duce model escales seamlessly to thousands of machines. It is used continously for
a multitude of real world applications, from machine learning to graph computa-
tions. And most importantly the e�ort required to develop a high performance
parallel application with MapReduce is much lower than using other models, like
for example MPI [12].

3. Quadratic Sieve

The Quadratic Sieve algorithm was conceived by Carl Pomerance in 1981. A
detailed explanation of the algorithm can be found in [13]. Here we will just re-
view the basic steps. Let N be the integer that we are trying to factor. We
will attempt to �nd a, b such that: N |

(
a2 − b2

)
⇒ N | (a + b) (a − b). If

{(a + b,N) , (a − b, N)} 6= {1, N} then we will have a factorization of N .
Lets de�ne:

Q (x) = x2 − N

if we �nd x1, x2, ...xK such that
∏K

i=1 Q (xi) is a perfect square, then:

N |
K∏

i=1

Q (xi) −

(
K∏

i=1

xi

)2

=
K∏

i=1

(
x2

i − N
)
− x2

1x
2
2...x

2
K

3.1. Finding Squares. Let's take a set of integers x1, ..., xL which are B-smooth
(all xi factor completely into primes ≤ B). One way to look for i1, i2, ..., iM such

that
∏M

j=1 xij is a square is as follows. Let's denote pi the i-th prime number.∏M
j=1 xij = pa1

j1
pa2

j2
...paL

jL
is a square if and only if 2 | ak for all k ⇔ ak ≡ 0mod (2).

For each xi we will obtain a vector vi = v (xi) where vi
j = max

{
k : pk

j | xi

}
mod (2).

That is, each component j of vi is the exponent of pj in the factorization of xi mod-
ulo 2. For example, for B = 4:
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x1 = 6, v1 = (1, 1, 0, 0)
x2 = 45, v2 = (0, 0, 1, 0)
x3 = 75, v3 = (0, 1, 0, 0)

It is immediate that:

v

 M∏
j=1

xij

 =
M∑

j=1

v
(
xij

)
Then

M∏
j=1

xij is a square ⇔ v

 M∏
j=1

xij

 =
−→
0

In conclussion, in order to �nd a subset of x1, ..., xL which is a perfect square,
we just need to solve the linear system:

(
v1 | v2 | . . . | vL

)


e1

e2

...
eL

 ≡ −→
0 mod (2)

3.2. Sieving for smooth numbers. Back to the original problem, we just need
to �nd a convenient set {x1, x2, ..., xL} such that {Q (x1) , Q (x2) , ..., Q (xL)} are
B-smooth numbers for a particular B. First of all, lets notice that we don't need to
consider every prime number ≤ B. If a prime p veri�es: p | Q(x) for some x then:

p | Q(x) ⇔ p | x2 − N ⇔ x2 ≡ N mod (p) ⇔
(

N

p

)
= 1

Because N is a quadratic residue modulo p if and only if the Legendre symbol
of n over p is 1. We will take a set of primes which veri�es that property and we
will call it factor base.

In order to consider smaller values of Q(x) we will take values of x around
√

N,

i.e. x ∈
[
b
√

Nc − M, b
√

Nc + M
]
for some M. Both B above and M here are

chosen as indicated in [13].
In order to factor all the Q(xi) we will use a method called sieving which is

what gives the quadratic sieve its name. Notice that p | Q(x) ⇒ p | Q(x + kp) =
x2 + 2kpx + k2p2 − N =

(
x2 − N

)
+ p

(
2kx + k2p

)
. Then

Q(x) ≡ 0 mod (p) ⇒ ∀k ∈ N, Q(x + kp) ≡ 0mod (p)

We can solve the equation Q(x) ≡ 0mod (p) ⇔ x2 − N ≡ 0mod (p) e�ciently
and obtain two solutions s1, s2 [14]. If we take:

zp,{1,2} = min
{

x ∈
[
b
√

Nc − M, b
√

Nc + M
]

: x ≡ s{1,2} mod (p)
}

then all Q
(
zp,{1,2} + kp

)
, k ∈ [0,K] are divisible by p. We can divide each one of

them by the highest power of p possible. For example:
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(xi) = (. . . , 6, 7, 8, 9, 10, . . .)
(Q (xi)) = (. . . ,−41,−28,−13, 4, 23, . . .)(

77
2

)
= 1 as 77 ≡ 1 ≡ 12 mod (2)

x2 − 77 ≡ 0mod (2) yields 1, 3, 5, 7, 9, ...

(. . . ,−41,−7,−13, 1, 23, . . .) after sieving by 2

After sieving for every appropriate p, all the Q(z) that are equal to 1 are smooth
over the factor base.

4. Method

I developed a basic implementation of the Quadratic Sieve MapReduce which
runs on Hadoop [15]. Hadoop is an open source implementation of the MapReduce
framework. It is made in Java and it has been used e�ectively in con�gurations
ranging from one to a few thousand computers. It is also available as a commercial
cloud service [16].

This implementation is simply a proof of concept. It relies too heavily on the
MapReduce framework and it is severy bound by IO. However the size and complex-
ity of the implementation are several orders of manitude lower than many competing
alternatives.

The 3 parts of the program are :

• Controller : Is the master job executed by the platform. It runs before
spawning any worker job. It has two basic functions: �rst it generates the
factor base. The factor base is serialized and passed to the workers as a
counter. Second it generates the full interval to sieve. All the data is stored
in a single �le in the distributed Hadoop �le system [17]. It then relies on
the MapReduce framework to automatically split it in an adequate number
of shards and distribute it to the workers

• Mapper : The mappers perform the sieve. Each one of them receives an
interval to sieve, and they return a subset of the elements in that input
sieve which are smooth over the factor base. All output elements of all
mappers share the same key

• Reducer : The reducer receives the set of smooth numbers and attempts
to �nd a subset of them whose product is a square by solving the system
modulo 2 using direct bit manipulation. If it �nds a suitable subset, it tries
to factor the original number, N. In general there will be many subsets
to choose from. In case that the factorization is not succesful with one of
them, it proceeds to use another one. The single output is the factorization

In order to compare performance I developed another implementations of the Qua-
dratic Sieve algorithm in Maple. They are both available online1. Both implemen-
tations are basic in the sense that they implement the basic algorithm described
above and the code has not been heavily optimized for performance. There are
many di�erences between the two frameworks used that could impact performance.
Because of that a direct comparison of running times or memory space may not be
meaningful. However it is interesting to notice how each of the implementations
scales depending on the size of the problem.

1http://www.javiertordable.com/research.html TBD
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Decimal Sieve MapReduce Maple
Digits Size Time (s) Memory (MB) Time (s) Memory (MB)

10 5832 2.0 149.6 0.1 7.5
15 85184 3.0 397.1 3.5 15.5
20 970299 35.0 463.1 116.0 100.8
25 7529536 495.0 670.0 3413.7 894.0

Table 1. Absolute performance of the MapReduce and Maple implementations

Decimal Sieve MapReduce Maple
Digits Size Time Memory Time Memory

10 1.0 1.0 1.0 1.0 1.0
15 14.6 1.5 2.7 35.0 2.1
20 166.4 17.5 3.1 1160.0 13.4
25 1291.1 247.5 4.5 34137.0 119.2

Table 2. Normalized performance of the MapReduce and Maple implementations

Decimal Absolute Sieve Relative Sieve Absolute Relative

Digits Size Size Disk (MB) Disk (MB)
10 5832 1.0 0.1 1.0
15 85184 14.6 2.1 14.6
20 970299 166.4 29.4 166.4
25 7529536 1291.1 275.3 1291.1

Table 3. Disk usage of the MapReduce implementation

5. Results

Figures 1 and 2 show the results both in absolute terms and normalized. Figure
3 shows the disk usage of the MapReduce implementation. To test both implemen-
tations I took a set of numbers of di�erent sizes2. The number of decimal digits d
is indicated in the �rst column of each table. In order to contruct those numbers I
took two factors close to 10

d
2 , with their product slightly over 10d.

In each table sieve size indicates the number of elements that the algorithm
analyzed in the sieve phase. For the MapReduce application the time result is
taken from the logs, and the memory result is obtained as the maximum memory
used by the process. For the Maple implementation both time and memory data
are taken from the on screen information in the Maple environment. Finally disk
usage data for the MapReduce is taken as the size of the �le that contains the list of
numbers to sieve. The Maple program runs completely in memory for the samples
analyzed.

21164656837, 117375210056563, 10446257742110057983, 1100472550655106750000029
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6. Discussion

The MapReduce implementation has a relatively big setup cost in time and
memory when compared with an application in a conventional mathematical envi-
ronment. However it scales better with respect to the size of the input data.

MapReduce is optimized to split and distribute data form disk. If an application
handles a signi�cant volume of data, IO capacity and performance can be a limiting
factor. In our case disk usage is directly proportional to the size of the sieve set,
which grows exponentially on the number of digits.

Both MapReduce and Maple implementations are similar in terms of develop-
ment e�ort. The Maple implementation seems more adequate for small-sized prob-
lems while the MapReduce application is more e�cient for medium-sized problems.
Also it will be easier to scale in order to solve harder problems.
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